Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19443, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945788

RESUMO

The ordered porous frameworks like MOFs and COFs are generally constructed using the monomers through distinctive metal-coordinated and covalent linkages. Meanwhile, the inter-structural transition between each class of these porous materials is an under-explored research area. However, such altered frameworks are expected to have exciting features compared to their pristine versions. Herein, we have demonstrated a chemical-induction phase-engineering strategy to transform a two-dimensional conjugated Cu-based SA-MOF (Cu-Tp) into 2D-COFs (Cu-TpCOFs). The structural phase transition offered in-situ pore size engineering from 1.1 nm to 1.5-2.0 nm. Moreover, the Cu-TpCOFs showed uniform and low percentage-doped (~ 1-1.5%) metal distribution and improved crystallinity, porosity, and stability compared to the parent Cu-Tp MOF. The construction of a framework from another framework with new linkages opens interesting opportunities for phase-engineering.

2.
J Hazard Mater ; 459: 132261, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572608

RESUMO

Efficient enzyme immobilization is crucial for the successful commercialization of large-scale enzymatic water treatment. However, issues such as lack of high enzyme loading coupled with enzyme leaching present challenges for the widespread adoption of immobilized enzyme systems. The present study describes the development and bioremediation application of an enzyme biocomposite employing a cationic macrocycle-based covalent organic framework (COF) with hierarchical porosity for the immobilization of horseradish peroxidase (HRP). The intrinsic hierarchical porous features of the azacalix[4]arene-based COF (ACA-COF) allowed for a maximum HRP loading capacity of 0.76 mg/mg COF with low enzyme leaching (<5.0 %). The biocomposite, HRP@ACA-COF, exhibited exceptional thermal stability (∼200 % higher relative activity than the free enzyme), and maintained ∼60 % enzyme activity after five cycles. LCMSMS analyses confirmed that the HRP@ACA-COF system was able to achieve > 99 % degradation of seven diverse types of emerging pollutants (2-mercaptobenzothiazole, paracetamol, caffeic acid, methylparaben, furosemide, sulfamethoxazole, and salicylic acid)in under an hour. The described enzyme-COF system offers promise for efficient wastewater bioremediation applications.


Assuntos
Estruturas Metalorgânicas , Porosidade , Enzimas Imobilizadas/metabolismo , Catálise , Biodegradação Ambiental , Peroxidase do Rábano Silvestre/metabolismo
3.
Angew Chem Int Ed Engl ; 62(29): e202304313, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37212616

RESUMO

Hydrogen-bonded organic frameworks (HOFs) are ordered supramolecular solid structures, however, nothing much explored as centimetre-scale self-standing films. The fabrication of such crystals comprising self-supported films is challenging due to the limited flexibility and interaction of the crystals, and therefore studies on two-dimensional macrostructures of HOFs are limited to external supports. Herein, we introduce a novel chemical gradient strategy to fabricate a crystal-deposited HOF film on an in situ-formed covalent organic polymer film (Tam-Bdca-CGHOF). The fabricated film showed versatility in chemical bonding along its thickness from covalent to hydrogen-bonded network. The kinetic-controlled Tam-Bdca-CGHOF showed enhanced proton conductivity (8.3×10-5  S cm-1 ) compared to its rapid kinetic analogue, Tam-Bdca-COP (2.1×10-5  S cm-1 ), which signifies the advantage of bonding-engineering in the same system.

4.
Chem Commun (Camb) ; 59(18): 2608-2611, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36757151

RESUMO

A novel class of copper-based 2D-c-MOF was synthesized from 1,3,5-triformylphloroglucinol using green mechano-chemistry. Herein, metal coordination with the salicylaldehyde functional moiety was explored for the first time in MOFs. Moreover, an intrinsic semiconductive copper-based SA-MOF thin film was fabricated using an in situ salt-free method at room temperature.

5.
ACS Appl Mater Interfaces ; 14(34): 39293-39298, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35994411

RESUMO

Azacalix[n]arenes (ACAs) are lesser-known cousins of calix[n]arenes that contain amine bridges instead of methylene bridges, so they generally have higher flexibility due to enlarged cavities. Herein, we report a highly substituted cationic azacalix[4]arene-based covalent organic framework (ACA-COF) synthesized by the Zincke reaction under microwave irradiation. The current work is a rare example of a synthetic strategy that utilizes the chemical functionalization of an organic macrocycle to constrain its conformational flexibility and, thereby, produce an ordered material. Considering the ACA cavity dimensions, and the density and diversity of the polar groups in ACA-COF, we used it for adsorption of uric acid and creatinine, two major waste products generated during hemodialysis treatment in patients with renal failure. This type of application, which has the potential to save ∼400 L of water per patient per week, has only been recognized in the last decade, but could effectively address the problem of water scarcity in arid areas of the world. Rapid adsorption rates (up to k = 2191 g mg-1 min-1) were observed in our COF, exceeding reported values by several orders of magnitude.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Adsorção , Humanos , Estruturas Metalorgânicas/química , Diálise Renal , Resíduos , Poluentes Químicos da Água/análise
6.
ACS Appl Mater Interfaces ; 14(27): 30796-30801, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35713305

RESUMO

Metal nanoparticles are potent reaction catalysts, but they tend to aggregate, thereby limiting their catalytic efficiency. Their coordination with specific functional groups within a porous structure prevents their aggregation and facilitates the mass flow of catalytic starting materials and products. Herein, we use a thiacalix[4]arene-based polymer as a porous support with abundant docking sites for Au nanoparticles. The sulfur atoms bridging the phenolic subunits of thiacalix[4]arene serve as Lewis basic sites that coordinate Au atoms. Therefore, this approach takes advantage of the functional groups inherent in the monomer and avoids laborious postsynthetic modifications of the polymer. The presented system was tested for visible-light-driven photocatalytic CO2 reduction, where it showed adequate ability to generate 6.74 µmol g-1 CO over the course of 4 h, while producing small amounts of the CH4 product. This study aims to stimulate interest in the design and development of synthetically simpler porous polymer supports for various metal nanoparticles in catalytic and other applications.

7.
Angew Chem Int Ed Engl ; 61(13): e202200905, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35068021

RESUMO

The ordered open organic frameworks membranes are attractive candidates for flow-assisted molecular separations. The physicochemical properties of such membranes mostly depend on their selectively chosen functional building blocks. In this work, we have introduced a novel concept of functional switchability of three-dimensional covalent organic framework (3D-COF) membranes through a simple solvent-influenced fragmentation method. This room-temperature interfacial synthesis provides free-standing 3D-COF membranes with distinct physicochemical properties from the same building monomers. Notably, the change of solvent from chloroform to ethyl acetate switches the membrane property from hydrophilic (water contact angle 60°) to hydrophobic (water contact angle 142°) nature. The hydrophobic 3D-COF membrane selectively passes oil molecules from an oil-water emulsion with a gravitational flux of 1536 L m-2 h-1 .

8.
ACS Appl Mater Interfaces ; 14(1): 2015-2022, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931799

RESUMO

Photocatalytic CO2 reduction into formate (HCOO-) has been widely studied with semiconductor and molecule-based systems, but it is rarely investigated with covalent organic frameworks (COFs). Herein, we report a novel donor-acceptor COF named Co-PI-COF composed of isoindigo and metallated porphyrin subunits that exhibits high catalytic efficiency (∼50 µmol formate g-1 h-1) at low-power visible-light irradiation and in the absence of rare metal cocatalysts. Density functional theory calculations and experimental diffuse-reflectance measurements are used to explain the origin of catalytic efficiency and the particularly low band gap (0.56 eV) in this material. The mechanism of photocatalysis is also studied experimentally and is found to involve electron transfer from the sacrificial agent to the excited Co-PI-COF. The observed high-efficiency conversion could be ascribed to the enhanced CO2 adsorption on the coordinatively unsaturated cobalt centers, the narrow band gap, and the efficient transfer of the charge originating from the postsynthetic metallation. It is anticipated that this study will pave the way toward the design of new simple and efficient catalysts for photocatalytic CO2 reduction into useful products.

9.
J Am Chem Soc ; 142(18): 8252-8261, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32279483

RESUMO

The induction of macro and mesopores into two-dimensional porous covalent organic frameworks (COFs) could enhance the exposure of the intrinsic micropores toward the pollutant environment, thereby, improving the performance. However, the challenge is to build a continuous hierarchically porous macro-architecture of crystalline organic materials in the bulk scale. In this regard, we have strategized a novel synthetic method to create hierarchically porous COF foams consisting of ordered micropores (2-2.2 nm) and disordered meso and macropores (50 nm to 200 µm) as well as ordered macropores (1.5 mm to 2 cm). Herein, graphene oxide was used for creating disordered macro and mesopores in COF-GO foams. Considering the rheological features of the precursor hydrogel, we could integrate crystalline and porous COF-GO foams into self-supported three-dimensional (3D)-printed objects with the desired shapes and sizes. Therefore, we have engineered the 3D macro-architecture of COF-GO foams into complex geometries keeping their structural order and continuous porosity intact over a range of more than a million (10-9 m to 10-3 m). The interconnected 3D openings in these COF-GO foams further enhance the rapid and efficient uptake of organic and inorganic pollutants from water (>95% removal within 30 s). The abundant distribution of interconnected macroporous volume (55%) throughout the COF-GO foam matrix enhances the flow of water (1.13 × 10-3 m·s-1) which results in efficient mass transport and adsorption.

10.
ACS Appl Mater Interfaces ; 11(34): 30828-30837, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31386343

RESUMO

The redox-active and porous structural backbone of covalent organic frameworks (COFs) can facilitate high-performance electrochemical energy storage devices. However, the utilities of such 2D materials as supercapacitor electrodes in advanced self-charging power-pack systems have been obstructed due to the poor electrical conductivity and subsequent indigent performance. Herein, we report an effective strategy to enhance the electrical conductivity of COF thin sheets through the in situ solid-state inclusion of carbon nanofibers (CNF) into the COF precursor matrix. The obtained COF-CNF hybrids possess a significant intermolecular π···π interaction between COF and the graphene layers of the CNF. As a result, these COF-CNF hybrids (DqTp-CNF and DqDaTp-CNF) exhibit good electrical conductivity (0.25 × 10-3 S cm-1), as well as high performance in electrochemical energy storage (DqTp-CNF: 464 mF cm-2 at 0.25 mA cm-2). Also, the fabricated, mechanically strong quasi-solid-state supercapacitor (DqDaTp-CNF SC) delivered an ultrahigh device capacitance of 167 mF cm-2 at 0.5 mA cm-2. Furthermore, we integrated a monolithic photovoltaic self-charging power pack by assembling DqDaTp-CNF SC with a perovskite solar cell. The fabricated self-charging power pack delivered excellent performance in the areal capacitance (42 mF cm-2) at 0.25 mA cm-2 after photocharging for 300 s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...